Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(45): e2305402, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492940

RESUMO

Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.

2.
Faraday Discuss ; 246(0): 441-465, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37427498

RESUMO

We explore the possibility of coupling the transport of ions and water in a nanochannel with the chemical transformation of a reactant at an individual catalytic nanoparticle (NP). Such configuration could be interesting for constructing artificial photosynthesis devices coupling the asymmetric production of ions at the catalytic NP, with the ion selectivity of the nanochannels acting as ion pumps. Herein we propose to observe how such ion pumping can be coupled to an electrochemical reaction operated at the level of an individual electrocatalytic Pt NP. This is achieved by confining a (reservoir) droplet of electrolyte to within a few micrometres away from an electrocatalytic Pt NP on an electrode. While the region of the electrode confined by the reservoir and the NP are cathodically polarised, operando optical microscopy reveals the growth of an electrolyte nanodroplet on top of the NP. This suggests that the electrocatalysis of the oxygen reduction reaction operates at the NP and that an electrolyte nanochannel is formed - acting as an ion pump - between the reservoir and the NP. We have described here the optically imaged phenomena and their relevance to the characterization of the electrolyte nanochannel linking the NPs to the electrolyte microreservoir. Additionally, we have addressed the capacity of the nanochannel to transport ions and solvent flow to the NP.

3.
Small Methods ; 7(10): e2300214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382395

RESUMO

Operando wide-field optical microscopy imaging yields a wealth of information about the reactivity of metal interfaces, yet the data are often unstructured and challenging to process. In this study, the power of unsupervised machine learning (ML) algorithms is harnessed to analyze chemical reactivity images obtained dynamically by reflectivity microscopy in combination with ex situ scanning electron microscopy to identify and cluster the chemical reactivity of particles in Al alloy. The ML analysis uncovers three distinct clusters of reactivity from unlabeled datasets. A detailed examination of representative reactivity patterns confirms the chemical communication of generated OH- fluxes within particles, as supported by statistical analysis of size distribution and finite element modelling (FEM). The ML procedures also reveal statistically significant patterns of reactivity under dynamic conditions, such as pH acidification. The results align well with a numerical model of chemical communication, underscoring the synergy between data-driven ML and physics-driven FEM approaches.

4.
Angew Chem Int Ed Engl ; 62(29): e202304950, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216394

RESUMO

This work proposes a novel method for measuring the intrinsic activity of single metal-based nanoparticles towards water reduction in neutral media at industrially relevant current densities. Instead of using gas nanobubbles as proxy, the method uses optical microscopy to track the local footprint of the reaction through the precipitation of metal hydroxide, which is associated to the local pH increase during electrocatalysis. The results show the electrocatalytic activities of different types of metal nanoparticles and bifunctionnal core-shell nanostructures made of Ni and Pt, and demonstrate the importance of metal hydroxide nano-shells in enhancing electrocatalysis. This method should be generalizable to any electrocatalytic reaction involving pH changes such as nitrate or CO2 reduction.

6.
ACS Nano ; 16(9): 14422-14431, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099198

RESUMO

Monitoring chemical reactions in solutions at the scale of individual entities is challenging: single-particle detection requires small confocal volumes, which are hardly compatible with Brownian motion, particularly when long integration times are necessary. Here, we propose a real-time (10 Hz) holography-based nm-precision 3D tracking of single moving nanoparticles. Using this localization, the confocal collection volume is dynamically adjusted to follow the moving nanoparticle and allow continuous spectroscopic monitoring. This concept is applied to study galvanic exchange in freely moving colloidal silver nanoparticles with gold ions generated in situ. While the Brownian trajectory reveals particle size, spectral shifts dynamically reveal composition changes and transformation kinetics at the single-object level, pointing at different transformation kinetics for free and tethered particles.

7.
Small Methods ; 6(9): e2200659, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789075

RESUMO

The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.


Assuntos
Nanopartículas Metálicas , Platina , Hidrogênio , Nanopartículas Metálicas/química , Microscopia/métodos , Níquel/química , Platina/química
8.
J Phys Chem Lett ; 13(24): 5468-5473, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35687372

RESUMO

The fast establishment of structure-reactivity relationships is crucial to identifying the most appropriate nanoparticles (NPs) for a given application. This requires the development of methodologies allowing, simultaneously, the unraveling of the NPs geometry and the screening of their reactivity. Herein, nanoimpact electrochemistry (NIE) allows for quantifying the transformation and measuring the electrocatalytic activity for the oxygen evolution reaction (OER) of >100 Ni(OH)2 NPs of a wide range of size (NP radii from 25 to 100 nm). This is achieved by scanning electrochemical microscopy in a generation/collection-like mode, with one electrode being used to electrogenerate by local precipitation colloidal Ni(OH)2 NPs and the second one being used to collect them by NIE. It allows (i) quantifying the reductive and oxidative conversion of the Ni(OH)2 NPs and (ii) separating the electrochemical conversion and the OER electrocatalysis, leading to the evaluation of a structure-activity relationship.

9.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 57-82, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216529

RESUMO

An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.


Assuntos
Microscopia , Nanotecnologia , Eletroquímica
10.
Faraday Discuss ; 233(0): 122-148, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34909815

RESUMO

We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-µm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.

11.
Angew Chem Int Ed Engl ; 60(31): 16980-16983, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34101324

RESUMO

Electrodeposition of earth-abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a <25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self-terminated growth, an information which is most often hidden in ensemble averaged measurements.

12.
ACS Nano ; 15(2): 2643-2653, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33523639

RESUMO

While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?

13.
Nanoscale ; 12(28): 15128-15136, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32657309

RESUMO

Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.

14.
J Am Chem Soc ; 142(17): 7937-7946, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32223242

RESUMO

By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas/química
15.
Nanoscale ; 12(5): 3227-3235, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967631

RESUMO

Most protocols developed to synthesize nanoparticles (NPs) and to control their shape are inspired from nucleation and growth theories. However, to rationalize the mechanisms of the shape-selective synthesis of NPs, experimental strategies allowing to probe in situ the growth of NPs are needed. Herein, metal Au or Ag nanoparticles (NPs) are produced by reaction of a metallic ion precursor with a reversible redox reducer. The process is explored by an oxidative electrosynthesis strategy using a sacrificial Au or Ag ultramicroelectrode to both trigger the metallic ion generation and control the local concentrations of the different reactants. The effect of the driving force for the metallic ion reduction over metal NP growth dynamics is inspected in situ and in real time at the single NP level by high-resolution optical microscopy from the tracking of the Brownian trajectories of the growing NPs in solution. The NP reductive growth/oxidative etching thermodynamics, and consequently the NP shape, are shown to be controlled electrochemically by the reversible redox couple, while the intervention of an Au(i) intermediate ion is suggested to account for the formation of gold nanocubes.

17.
Angew Chem Int Ed Engl ; 57(37): 11998-12002, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30024085

RESUMO

Electrodeposition of nanoparticles (NPs) is a promising route for the preparation of highly electroactive nanostructured electrodes. By taking advantage of progressive electrodeposition, disordered arrays with a wide size distribution of Ag NPs are produced. Combined with surface-reaction monitoring by using highly sensitive backside absorbing-layer optical microscopy (BALM), such arrays offer a platform for screening size-dependent electrochemistry at the single NP level. In particular, this strategy allows rationalizing the electrodeposition dynamics at the single-NP level (>10 nm), up to the point of quantifying the presence of metal nanoclusters (<2 nm), and probing easier NP oxidation with size decrease, either through electrochemical or galvanic reactions.

18.
Faraday Discuss ; 210(0): 381-395, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975385

RESUMO

The interest in nano-objects has recently dramatically increased in all fields of science, and electrochemistry is no exception. As a consequence, in situ and operando visualization of electrochemical processes is needed at the nanoscale. Herein, we propose a new interferometric microscopy based on an antireflective thin metal electrode layer. The technique is coupled to electrochemistry in a model example: the electro-deposition of Ag metallic nanoparticles (NPs). This challenges the current opto-electrochemical methods and even those relying on nano-impact detection. Indeed, the sensitivity allows the dynamic in situ visualization of the electrochemical growth and dissolution of individual Ag NPs, whose size was tracked dynamically down to 15 nm in diameter. The use of microelectrodes provides interesting quantitative analysis of the NPs, from optically resolved arrays of single NPs to condensed arrays of (unresolved) NPs. Particularly, the optical analysis of all the individual NPs allows the reconstruction of optical voltammograms similar to the electrochemical ones. Finally, the NP dissolution-redeposition is also investigated.

19.
Langmuir ; 32(46): 12056-12066, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27788007

RESUMO

A method is described for the in situ growth of substrate-supported organized gold nanoparticles. Upon exposure to an aqueous solution of a gold salt and a mild reducing agent, the particle size can be significantly increased without any loss of superstructure organization. Furthermore, no secondary nucleation is observed. The surface-supported regrowth procedure can be combined with the Langmuir-Blodgett technique to produce a rich library of plasmonic nanoparticle assemblies. Controlled particle regrowth plays a crucial role in this assembly method because only relatively small metallic nanoparticles can be directly dispersed in polymeric Langmuir-Blodgett films. The versatility of the method is demonstrated through the fabrication of several specific nanoparticle structures, including contiguous plasmonic rings, core-satellite structures, and necklace assemblies. Plasmon extinction spectra are presented for the various nanoparticle superstructures and illustrate the importance of controlling both particle size and assembly architecture in achieving targeted optical properties. The reported approach constitutes a viable bottom-up assembly route for the fabrication of surface-supported nanoparticle superstructures for plasmonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...